
UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

Transformation of Mapped Data to Grid Systems
with Applications to Earthquake Data

By

Bonny Askew

Open-File Report 83-248

1982

This report is preliminary and has not
been reviewed for conformity with U.S.
Geological Survey editorial standards

Table of Contents

Page
Introduction 1
Theory 1
The Algorithm 8
The Program 14
Applications

Illustrations

Figure 1. Contoured intensity map 2
Figure 2. Cell assignment 3
Figure 3. Counting intersections along a ray 4
Figure 4. Checking slopes near tangent intersections 6
Figure 5. Propagation in theory 7
Figure 6. Definition of terms 9
Figure 7. Propagation in actual use 10
Figure 8. Integrating under the north wall 12
Figure 9. Negative integrals 13
Figure 10. Data structures 15
Figure 11. Assignment of values in data structures 16
Figure 12. Format of input file 18
Figure 13. Effect of digitizing error 20
Figure 14. Nesting structure of subroutines 21

I. INTRODUCTION

This paper documents a computer program that transforms map data from a
series of digitized points representing regional boundaries into a grid system
in which each cell in the grid contains a value indicating the region within
which it falls. An example of the program's use is first presented, then the
basic problem of transforming map data to gridded data is examined, and some
theoretical results which provide a basis for the program are discussed. A
general algorithm is described which expands these specific theoretical
results into an approach for a general-purpose program. A Fortran program
implementing this algorithm is documented, and, finally, other applications of
this program are discussed.

In order to understand the usefulness of this transformation, consider
the following example of its application in the study of earthquake intensity
data. A measure of the effects of an earthquake is given by the Modified
Mercalli (MM) intensity scale. The MM scale has twelve degrees, identified by
Roman numerals ranging from I to XII. Each degree of the scale is annotated
with a specific set of earthquake effects. The intensity at the epicenter may
be anywhere on the scale depending on the size of the earthquake and site
conditions. The intensity generally falls off with increasing distance from
the epicenter, but not usually at a consistent rate due to site differences.
For a given earthquake, data showing the intensities felt at different
locations are collected, plotted on a map, and then contoured. An example of
a contoured intensity map is shown in figure 1. Contoured intensity maps are
available for most moderate and large size earthquakes in the United States.

A given location may have experienced a range of intensities resulting
from a number of different earthquakes during recorded history. A useful
method for evaluating the earthquake hazard at a given location is to divide
the area of interest into a grid of cells and, for each cell, store a history
showing the intensity of each earthquake felt at that location. The method
used to create this cell history is to process a contoured intensity map for
each recorded earthquake by marking each cell affected with the intensity
value that was experienced. A value of zero is assumed for cells outside the
lowest contour. This information can then be appended to a list of intensi­
ties stored for each cell. An example of how cells are assigned values from a
contoured intensity map is shown in figure 2. In order to compile such an
intensity history a computer program is needed which accepts digitized con­
tours defining an intensity map and produces a grid of cells with each cell
assigned a value indicating the intensity felt at that location.

II. THEORY

The basic problem that this program must solve is testing whether a given
cell is inside or outside a given region as defined by a boundary. This is
known as the point inclusion problem for which several different solutions
have been devised. Most commonly, a ray is extended to some point known to be
outside the boundary and the intersections with the boundary are counted. An
odd number of intersections indicates the point is inside (figure 3, point B)
and an even number indicates it is outside (figure 3, point A). An exception
to this rule occurs when the ray intersects a boundary tangentially (figure 3,

EXPLANATION

Epicenter

 Felt ot intensity 6

 Not felt

* CALIFORNIA '

34

Figure 1. Contoured Intensity Map taken from Stover, C. W. and C. A.

von Hake, U.S. Earthquakes, 1978. 1980.

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0

-£o-
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
A

0
0
0
0

9-
CT
0
0
0
0
0
0
0
0
0
0
0
0

-Qj
TL

$
vy

0
0
0
0
0
0
0
0
0
0

0
0
0
of
§
0}

1-4
h4
§
o\
0
0
0
0
0
0
0
0

0
0
01-
\
4
4
4
4
4
4

M
r
H

0
0
0
0

0
0
0
0
0

*v-
4

4
4
4
4
4
4
4
4

"0)

(4

0
0

0
0
0
0

-4

4
4
4
4
4
4
4
4
4
4
 4-

0
0

0
0
of
74
f-
(5
/5
,5
v, 4"

4
4
4
4
4
4

^4-
0
0

0
0
^
0
4
3-

5
5
5
rf
4
4
4
4
4
4
-4-

0
0

0
0

10
,0*%-

k

0
0
0
0

-4~

4

(^
'6 11_-- x'
4
4
4
4
4
4
4J
 rf

0
0

^4

4
4
4
4
4x

fi
0
0
0
0

0
0
0
0

K4^

4
4
4
4
4
4
4
/

0
0
0
0
0

0
0
0
0
0

4̂
4
4
4
^

0
0
0
0
0
0
0

0
0
0
0
0
0

4̂ s

4
4

-81

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0

tiA
Aj'o
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
o ;
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Figure 2. Example of cell assignment from a contoured Intensity map

Figure 3. Counting intersections along a ray from a given point to a point
with a "known value indicates whether that point is inside or outside a
region.

Point A: Four Intersections (even) indicate this point Is outside.
Point B: One Intersection (odd) Indicates this point Is inside.
Point C: Even numher of Intersections does not indicate point is outside.
Point D: Odd numher of Intersections does not indicate point Is inside.
Points K,, 3 Points of "known value.

points C and D). In these cases an intersection does not actually indicate a
crossing boundary. In order to use this approach, some means must be found to
recognize and handle tangential intersections. One method of recognizing
these intersections is to check the slope of the boundary line segment in both
directions from the point of intersection as described in Newman and Sproull
(1979), If the slope changes sign at the intersection (assuming a horizontal
ray) a tangent intersection is indicated as seen in figure 4. To keep the
counting scheme in order, such an intersection must be counted twice or not
counted at all.

In addition, some criteria must be established for assigning a value to a
cell that is cut by a boundary such that the cell is partially included and
partially excluded from a region. Here, the criterion applied is the percent­
age of a cell's area in each region.

The next step is to extend this algorithm to determine, for an entire
grid of cells, whether each cell is inside or outside a single region, or
polygon. It is not necessary to check each cell for inclusion within a region
by counting boundary intersections along a ray. A coherence property indi­
cates that two adjacent cells are both included within or excluded from, the
polygon unless a boundary line passes between them. One cell can be tested
and its value determined, and this value can be propagated in a given direc­
tion until a boundary line is encountered (figure 5). In most applications, a
significantly larger number of cells can receive values by propagation rather
than by testing.

The next step is to compute cell values for a map with multiple
boundaries defining different valued zones. One approach is to consider each
region separately using the above algorithm. This approach has several
drawbacks: (1) A problem arises in the case of one region being contained
entirely in a second. The order of processing such regions would affect the
final cell assignment. (2) The procedure is inefficient because many cells
will be processed more than once. (3) A single line segment would represent
the boundary between two regions. If this line is digitized separately in
each case, this may introduce some inaccuracies. Storing the boundary twice
would also be inefficient. (4) The case when a cell is cut by the boundaries
of more than one region may present difficulties. Keeping track of the
percentage of the cell's area in each region may become complicated or accur­
acy may be lost. For these reasons, processing all the regions together
becomes desirable. The following technique discussed by Nagy and Wagle (1979)
accomplishes this.

When working with map data, this approach is efficient, versatile, and
useful with two particular advantages. First, few limitations are set on the
characteristics of the input regions. For example, this method can work with
a map divided into a large number of regions; the boundaries do not have to
form closed figures; boundaries may lie very close to one another; and regions
contained entirely within other regions present no problem. The second
advantage is that boundaries dividing two regions need to be digitized only
once. The concepts used to determine individual cell values are based on the
theory outlined above and are integrated into an algorithm that processes an
entire map efficiently. Each boundary is read in, the areas of the cells

(a)

Decreasing
(negitive slope)

r

Increasing
'(positive slope)

horizontal ray

(b)

Decreasing . XQ-

(negative slope) horizontal ray

Decreasing
(negative slope)

Figure 4. Recognizing a tangent Intersection by checking the sign of the
slope on either side of the Intersection.

a) Change In the sign of the slope indicates a tangent intersection.
t>) No change in the sign of the slope indicates a non-tangent intersection,

Figure 5. Propagation in theory: The value at the window boundary (K) is
known and is propagated along the horizontal ray to point A. Point A is
found to be inside and assigned the value of the area inside the boundary
line (V2). This value is propagated to the right along the horizontal ray
until another boundary is reached at B. B is found to be outside the
boundary and is assigned the value V^. This is propagated as far as C. C
is found to be inside the boundary and given value V£. This value is
propagated to D. D is outside the boundary and given value Vj. This value
is propagated to the window boundary.

crossed by boundaries are incremented, criteria for propagation are
established, and then the boundary is discarded. Thus, all the boundaries do
not need to be stored in the program. A Fortran implementation of this
algorithm is presented here. A summary of the general algorithm follows next.

III. THE ALGORITHM

First, terms will be defined as used in this paper. Figure 6 illustrates
the definitions.

Boundary - A series of connected line segments with direction, forming a
division between two regions. As the segments are traversed
in the specified direction, one region lies always to the
right and another always to the left. A change in either
adjacent region marks the beginning of a new boundary. A
boundary may be a closed polygon.

Edge - One straignt line segment defined by two points forming part
or all of a boundary.

Segment - All or part of an edge falling within a single cell.

A map dividing a given area into regions is defined by boundaries. These
boundaries are input using a coordinate digitizer, so that a boundary is then
defined by a series of points. Each consecutive pair of points defines an
edge of the boundary. The values of the regions to the right and left of the
boundary are also entered. (Since a boundary has direction, right and left
sides are defined). A uniform grid of cells of a specified size is defined to
overlay the map. Each edge is broken into its component segments, by comput­
ing the points where it crosses grid lines.

Each segment is associated with a cell, which is defined by a column and
row in the grid. The percentage of the cell's area lying within the region on
each side of the segment is computed. This information is stored for each
cell cut by a segment. If additional segments cut the same cell, the informa­
tion is updated. After processing all segments, cut cells can be assigned a
value by determining which region covers the largest proportion of the cell.

In order to find values for interior cells (those uncut by boundaries),
values are propagated from a known point. By propagating in a specified
direction from each boundary until another boundary is reached, all interior
cells will be covered. In the previous examples, rays were shown extending
horizontally to the east and propagation took place in that direction. In
this algorithm, the ray will be extended vertically to the south, along the
west walls of a column of cells. When a boundary segment intersects a west
wall, a value is determined for the south side of the intersection and that
value is propagated down the west-wall ray until another intersection point is
encountered. This propagation is depicted in figure 7a. If a value is known
for the west wall of a cell, the value will hold for the entire cell if it is
uncut. If the cell is cut, but no segments intersect the west wall, propaga­
tion can continue past that cell along the west-wall ray without assigning a

Figure 6. Definition of Terms:

Boundary

Edge
Segment -

The entire perimeter of the polygon dividing region 1 from
region 2.
Line segment from A to B or B to C, etc.
Part of an edge that falls within a single cell as in a to b
or an entire edge as E to F.

o
o_
O)
«/>
O)

O)
_Q

O)
r>
c

en
o
Q.
O

-W
-7

(b) West-wall
Intersections

\
> >

(c) West-wall Segment,
Interior cell

(a) Propagation
along a west wall

(d) West-wall Segment,
Cut cell

Figure 7. Propagation in actual use. The method of propagation along a west
wall is illustrated in A. Figure B illustrates how several intersections on
the west wall affect the value in the southwest corner. Figures C and D
illustrate how a segment falling entirely on a west wall is not needed to
determine propagation.

10

value to the cut cell. For cut cells with segments intersecting the west
wall, a value can be determined for the southernmost point of the west wall
and that value can be propagated southward. Such cells will be referred to as
propagating cells.

In order to find the value of the southwest point of a cut cell, it is
necessary to know all the segments that intersect the west wall. A diagram of
a cell with west wall intersections is shown in figure 7b. The values of
regions to the right and left of each segment are indicated. In this
algorithm, it is not necessary to count intersections along the ray since the
regions on each side of a segment are identified. If two or more segments
intersect the west wall at different points, the lowest intersection will
determine the value at the southwest corner. If two segments intersect at the
same point, this is equivalent to the tangent intersection discussed
previously. The segment with the lower slope will cross the cell lower and
will determine the value at the southwest corner. Refer to figure 7b.

While processing each segment, values are updated which identify if and
how propagation will occur. Each segment is tested for intersection with the
cell's west wall. If this occurs the cell is marked as a propagating cell,
and the point of intersection, the slope, and the region to the south are
stored. If another segment intersects the west wall, it is tested to see if
it has a lower intersection or an equal intersection and a lower slope. If so
the intersection point, the slope, and the region are updated.

If a segment falls entirely on a west wall, it is ignored because another
segment intersecting the west wall will determine propagation. Examples of
such segments are shown in figures 7c and 7d. The cell in 7c is treated as an
interior cell and receives a value propagated from the cell above. The cell
in figure 7d is a cut cell, but the vertical segment has no part in determin­
ing propagation.

After all segments are processed, the value of the region in the south­
west corner has been stored and that value is propagated south until another
propagating cell is reached. Cells that are cut but not propagating are
ignored; propagation continues past them, but they receive their values by a
comparison of areas of regions overlapping the cell.

Integration of the segment within the cell has a few complexities (figure
8 and 9). The cell is assumed to be a unit cell having sides of length 1.0
and area of 1.0. An integration is performed to find the area under the
segment. This gives a positive result if the segment crosses the cell from
left to right and negative if it crosses from right to left. Adjustments must
be made to include areas under a north wall when part of the wall acts as a
region boundary within that cell. This occurs when one or more segments
intersect the cell's north wall. In case 1, the segment lies to the right of
the intersection point on the north wall. An additional amount must be added
to the integral equal to the X-coordinate of the intersection. In case 2, the
segment lies to the left of the intersection. A value of 1 minus the X-

11

(a) POSITIVE INTEGRAL
(area to right of
segment - inlegral)

(b) NEGATIVE INTEGRAL
(area 1o right of
segment -1-inlegral)

D B
(c) Negative Integra! subtracted

from positive Integral
(area to the right of both
segments^integral of AB-

Integral of CD)

Positive Integral Negative integral

Figure 8. Integrating under the North Wall.

Xt The distance from the northwest corner of the cell to the north wall
intersection point.

Case I: The segment lies to the right of the north wall intersection and
the value of the north wall integral is X.

Case II: The segment lies to the left of the north wall intersection and
the value of the north wall integral is (1-X).

Negative integrals: When the segment crosses the cell from right to left,
rather than left to right, the value of the north wall integral is
the negative of what it would otherwise have been.

12

CASE I: POSITIVE INTEGRAL CASE I: NEGATIVE INTEGRAL

CASE II: POSITIVE INTEGRAL CASE II: NEGATIVE INTEGRAL

Positive "inlegral Negative integral

Figure 9. Negative Integrals. The Integral Is positive when the segment
crosses the cell from left to right and negative vrtien it crosses from right
to left. If the final result Is negative a value of 1.0 Is added to give a
positive result. A negative Integral may be a subtraction from a positive
Integral.

13

coordinate must be added to the integral. If the segment crosses from right
to left these north wall integrals are subtracted rather than added* This
total integral then gives the area to the right of the segment. The area to
the left equals 1 minus this integral.

Figure 9 illustrates positive and negative integrals. A positive area is
added to any accumulated area of that region in that cell; a negative area is
subtracted. If no other segment has crossed that cell, this leaves a negative
area in some cases. This negative area actually represents an area subtracted
from the area of the whole cell. Therefore, a value of 1 must be added to
negative results (fig. 9b). In some cases, the result will be greater than
1. The true area is this value modulo 1.0. The final result, then, is always
greater than or equal to 0 and less than 1, indicating the percentage of the
cell's area covered by that region.

Special consideration must be given to the cases when a segment falls
exactly on a grid line. Segments on a grid line will always be considered as
falling on the west wall of the cell to the right or the south wall of the
cell above. Since a vertical line has an integral of 0, west-wall segments
can be ignored. A south-wall segment will give an integral of 0 for the area
to the right. The area to the left is then 1 minus 0, modulo 1.0, which also
equals 0. One of these regions actually covers the entire cell, and this
information is stored when such a segment is encountered. During the phase of
assigning cell values, a cell which is cut but has all areas equal to zero, is
known to be cut only on the south wall, and the value which was stored earlier
is used*

IV. THE PROGRAM

Three data structures are primary to the program. These three structures
are two-dimensional arrays named CELL, CUT, and PROP which are diagrammed in
figure 10. Figure 11 shows sample values after processing the segments and
before assigning values to the cells. The CELL array corresponds to the cell
grid in which the first subscript designates a grid column and the second a
grid row. While processing the segments, each cut cell is assigned a value
which points to a row in the CUT array.

The CUT array has enough columns for the maximum number of regions which
can cut a single cell plus one additional column. Column two and successive
columns are filled with values indicating a region number and the area of the
cell in that region. This is given by a single real number. The integer part
gives the region number and the fractional part gives the area (which is
always greater than or equal to 0 and less than 1). A given region number
will be placed in a column only once, then incremented as needed. The first
time that region is encountered in that cell, it is assigned to the first
unused column in that row. If the cell is also a propagating cell, the first
column of the CUT array is used to hold a pointer into the PROP array.

14

h MAXCOL

o
OH
X

CELL

I*
U-MAX REG

Pointer Areo, Areo Areo.
1o PROP. Reg. 1 Reg. 2 Reg. N

<->

CUT SCELL

Ordinole Angle Region

0.
C£
Q.

PROP

Figure 10. Data Structures

15

CELL

RIGHT =1

LEFT =2

Pointer Areo, Areo,
to Prop Reg. 1 Reg. 2 Region

0

0

-H-

1 0

ft0
T1

0

1.80

1.10

1.30

1.10

1.40

1.85

0

2.20

2.90

2.60

2.90

2.60

2.15

1

CUT SCELL

Ordinal e Angle Region

3.6

1.6

-2.0

1.5

1

2

PROP

Figure 11. Example of how values are placed in the data structures

16

The PROP array has 3 columns that contain the information needed to find
the value of the southwest corner of the cell. These three pieces of
information are the ordinate, slope, and region to the south of the last
encountered segment which will determine propagation. Any time a segment is
encountered in a given cell which has a lower ordinate on the west wall, or an
equal ordinate and lower slope, these values are updated to correspond to that
segment.

Another array, SCELL, stores the value of a region covering a cell which
is cut only by a south-wall segment. It is a one-dimensional array accessed
by the same pointer as the CUT array.

The array dimensions are set by parameters. In order to change any
dimensions in the program, only these parameters need to be changed. The
Fortran "include" statement is used so that only one copy of the parameters is
maintained. At compile time this copy is substituted in each routine that
calls for it. MAXSEG indicates the maximum number of segments in any edge.
MAXROW and MAXCOL are the maximum dimensions of the cell grid. MAXCUT is the
limit on the number of cut cells, and MAXPRP limits the number of propagating
cells. MAXREG is the maximum number of regions in a single cell. DIMCUT is
the column dimension of the CUT array and must be one greater than MAXREG.

These data structures differ from those proposed by Nagy and Wagle (1979)
by using pointers into the CUT and PROP arrays. The alternative to the use of
pointers is to allot space for each cell to store the information needed for
cut and propagating cells. The pointers use additional storage, but will save
more storage unless the cells are so large or the boundaries so dense that
almost all cells are cut. This is an important consideration since data
storage space may be a limiting factor in many applications.

A summary of the input file is shown in figure 12. The first input into
the program defines the grid characteristics. The variable, UNIT, defines the
spacing between grid lines. The coordinates, (XO, YO) define the southwest
corner of the cell in column 1 and row 1. The size of the grid is established
by the coordinates (XMAX,YMAX). The value given for MINMOV defines the
minimum length of a boundary edge. Points are read and discarded until a
minimum length edge is found. A value of 0 for MINMOV will cause the edges to
be processed exactly as they are input.

In order to fill the entire cell grid with region values, the north side
of the grid must act as a boundary from which values are propagated
southward. Otherwise, the area between the north side of the grid and the
northernmost boundary will contain whatever value the cells contain
initially. This may be undefined or incorrect. This program assumes YMAX is
greater than the northernmost boundary by a value at least equal to the value
of UNIT. This results in a continuous region along the north side of the
grid; no boundary intersects the north side. The value of NORTH indicates the
region bordering the north side. After all boundaries are processed, the
north side of the grid is treated as another boundary defined by (XO,YMAX) and
(XMAX,YMAX) with NORTH as the region to the right and -1 as the region to the
left. It is processed the same as all other boundaries.

17

Unit
XO, YO, XMAX, YMAX
NORTH
MINMOV

RIGHT, LEFT, NPTS
Xl> Y l
X2 , Y2

XNPTS» YNPTS

RIGHT, LEFT, NPTS
X1> Y lxf; yj

XNPTS» YNPTS

Figure 12. Format of Input File for program CELASN

UNIT - Spacing of cell grid
XO, YO - Smallest values of X and Y coordinates
XMAX, YMAX - Largest values of X and Y coordinates
NORTH - value of region adjacent to north boundary of the grid
MINMOV - minimum movement between digitized points to be processed
RIGHT - value of region to the right of a boundary
LEFT - value of region to the left of a boundary
NPTS - number of points in a boundary
XT , YT - X and Y coordinates of the I boundary point.

18

These seven values should appear on the first four lines of the input
file as shown in figure 12. This is followed by the input defining a series
of boundaries. The boundary definition consists of one line of descriptors
defining the region to the right (RIGHT), the region to the left (LEFT), and
the number of points in the boundary (NPTS) followed by the series of
digitized points (X-j-, Y-J-). This is repeated for each boundary.

In order for this program to run correctly, all digitized boundaries must
intersect exactly without gaps or overlaps. Since at some level of accuracy
digitized data are not exact, pre-processing of the data will often be
necessary. The type of processing will depend on the nature of the input. In
the earthquake-intensity-map example used here, the primary need for pre­
processing is to insure that the first and last points of each boundary are
the same so that the polygonal contours close. Figure 13 illustrates the
effect of an unclosed boundary.

The nesting of the subroutines, as defined by the calling structure, is
shown in figure 14. A description of each routine follows given in outline
form.

19

8

8

10

Figure 13. Effect of digitizing error. As a result of an unclosed boundary
in row 3, column 5 propagation is not carried out properly.

20

CELASN

DIVIDE UPDATE ASSIGN

GRID SORT 2 1NTGRT REGINC

Figure 14. Nesting structure of subroutines in the program CELASN.
text for a full description of each routine.

See the

21

CELASN

This program takes a series of boundaries between regions on a map and
produces a grid of cells overlying the map. A value is given to each cell
determined by the value of region covering the largest part of the cell's
area.

I. Initialize
II. Loop on each boundary:

A. Loop on each edge:
Read points until edge is at least MINMOV in length

B. Divide edge into segments
C. Update cell descriptions

III. For north wall:
A. Divide edge into segments
B. Update cell descriptions

IV. Assign cell values
V. Write results

DIVIDE

This subroutine divides a boundary edge into segments, each falling within a
single cell.

I. Place crossings of edge with grid lines in SEG array
A. Find crossings in X-direction
B. Find crossings in Y-direction

II. Sort SEG array in direction edge travels

GRID

Given a line defined by two points, this subroutine returns all points where
the line crosses grid lines in a specified direction, either parallel to the
X-axis or the Y-axis. If the initial point of the line falls on a grid line,
this is not placed in the array, but if the terminal point falls on a grid
line, it is included.

I. Find the slope and intercept of the line, and initialize the grid
increments

II. Find the number of crossings with grid lines and the first crossing
A. Case 1: increasing direction, terminal point > initial point
B. Case 2: decreasing direction, initial point > terminal point

III. Generate remaining crossings by adding increments to initial crossing
appropriate number of times

22

SORT2

This Is a straight Insertion sort on a two-dimensional array. The sorting
algorithm is taken from Knuth (1973, p. 81).

I. Pull out each element after the first to test it
A. Test element against each preceding one to find correct position
B. Place the element in its correct position

UPDATE

This subroutine examines each segment of an edge, computes the area of the
region on either side of the segment within the cell, computes information for
determining the propagation region, and then updates the CELL, CUT, and PROP
arrays appropriately.

I. Initialize next segment ignoring duplicate segments in the array
II. Update CUT array

A. Find column and row of the cell
B. Find or initiate pointer into CUT array
C. Find integral of segment
D. Increment region to right by amount of integral
E. Increment region to left by (1-integral)

III. Check if cell is propagating
A. Find leftmost point and region to south of segment
B. Test if leftmost point intersects west wall of cell
C. If propagating update PROP array

1. Find or initiate pointer to PROP array
2. Test if ordinate of west-wall intersection is greater

than value stored; if equal test if angle is less than
that stored

3. If no value is stored yet or ordinate is greater or
ordinate is equal and angle is less then update
ordinate, angle, and region

INTGRT

This subroutine computes the integral under a line segment crossing a cell.
The integral is computed assuming a unit cell of area 1, so the value of the
integral is always less than or equal to 1. A segment crossing the cell from
right to left produces a negative integral.

I. Adjust values for a unit cell
II. Compute integral under segment
III. If north wall intersection, compute integral under north wall

23

REGINC

This subroutine searches across a given row in the CUT array for a given
region, then increments the area of that region according to the value of
INTGRL. The area is kept >s=0 and <1 by adding 1 to negative numbers and
taking the area modulo 1.

I. Find this region in the CUT array row or initiate it
II. Adjust area to be >=0 or <1
III. Increment area of region

ASSIGN

This subroutine loops through each cell in the grid, assigning it a value
according to which region covers the largest area of the cell. If the cell is
cut by one or more boundaries, the region covering the largest area within the
cell is determined. If the cell has a boundary intersecting the west wall, it
propagates the value of the southwest corner of the cell through all cells
south of it until another propagating cell is encountered. If a cell is cut
but all regions have an area of 0.0, this indicates that the cell is cut only
by a boundary on the south wall and the value of the cell has been previously
stored in the array SCELL.

I. Loop on each cell:
A. If cell is cut:

1. Find region covering largest area; if all regions equal
0, find region from SCELL array

B. If cell is propagating:
1. Loop through cells to south:

a. If cell is cut and propagating, stop loop
b. Assign cell propagating value

V. APPLICATIONS

This program performs a basic function needed when working extensively
with geographic data. In some cases, a gridded structure is explicitly needed
as for output to a line printer or a raster plotting device. In other cases,
transforming data to a gridded format expands data compilation and
manipulation capabilities or increases efficiency. In the example used in the
introduction, the gridded cell structure gives the capability to store
overlays of intensity contour maps. When data are stored in a cell grid,
information for a specific location can be easily retrieved. Thus an entire
history of earthquake intensities can be stored and easily retrieved for any
location, with the resolution controlled by the size of the cell used.

Another example from the study of earthquakes illustrates some of the
added capabilities and efficiency achieved by transforming map data to gridded
structures. We wish to divide the United States into zones that are geologi­
cally similar. We have a file storing the location of the epicenter and other
pertinent data about each earthquake recorded in the United States. For each

24

zone, we wish to compile a file of earthquakes with epicenters located in that
zone. The boundaries of the zones are digitized and used as input for this
program. The program returns a grid of cells covering the United States, with
a value in each cell indicating the zone in which the cell falls. The
location for each earthquake in the file is determined to fall in a particular
cell and the earthquake is then assigned to the zone indicated by the value
for that cell. Other geologic features with known latitude and longitude
coordinates may also be associated with zones using the same procedure. The
size chosen for the cell grid will determine the accuracy of the results.

25

REFERENCES

Knuth, D. E., 1973, The art of computer programming, v. Ill: sorting and
searching, Reading, Mass., Addison-Wesley, p. 81.

Nagy, G., and S. G. Wagle, 1979, Approximation of polygonal maps by cellular
maps, Comm. ACM 22, 9, p. 518-525.

Newman, W. W. and R. F. Sproull, 1979, Solid area scan conversion, in
Principles of interactive computer graphics, New York, McGraw-Hill, p.
2290246.

Stover, C. W. and C. A. von Hake, 1980, United States Earthquakes, 1978, U.S
Geological Survey and National Oceanic and Atmospheric Administration, 31
P«

26

c program celasn

c - - -
c programmed by bonny askew
c

c this program takes a series of map boundaries defining regions
c and produces a grid of cells overlying the map* where each cell
c holds a value indicating the region covering the largest part of

 the cell's area.

include 'param. for'

integer cell(maxrow*maxcol)* scell(maxcut)/ npt* nseg,ncut/nprop* jpt
integer k*right*left
real seg(maxseg* 2),cut(maxcut* dimcut)* prop(maxprp* 3)
real unit* minmov* xl* yl* x2* y2* move

c initial ize
call openfl
read(5*2OOO) unit
read(5/3OOO> xO* yO* xmax* ymax
read(5*2OOO) minmov
read (5,4OOO) north
xO = xO/unit
yO = yO/unit
xmax = xmax/unit
ymax = ymax/unit
minmov = minmov/unit
ncol = int(xmax xO) + l
nroui = int(ymax-yO)+2
if ((nroui . gt. maxrou) .or. (ncol . gt. maxcol)) call error(3)

i
c for each boundary* process its edges

1O continue
read(9* 5OOO* end = lOO) right/ left* npt
read(9*6OOO*end=lOO) x2, y2
x2 = x2/unit-xO
y2 = y2/unit-yO

= 1

- for each edge* divide into segments and update cell descriptions
2O continue

xl = x2
yl = y2

4O continue
jpt = jpt+1
read(9*6OOO, end = lOO) x2* y2
x2 = x2/unit-xO
y2 = y2/unit-yO
move = sqrt((x2-xl)**2+(y2-yl)**2)
if (move .It. minmov) go to 4O
call divide(xl/ yl* x2/ y2/ seg, nseg)
call update (right* left* xO/ yO/ seg* nseg*

+ cell*cut*ncut*prop*nprop*scell)
if (jpt . It. npt) go to 2O

go to 1O
1OO continue .

c process north boundary
xl « O
yl «= nrow-. 5
x2 = ncol
y2 =* nroui-. 5
call divide(xli y1*x2iy2*seg,nseg)
call update(north» O« xO« yO» seg* nseg*

-i- eel l»cut/ncut« prop* nprop,scell>

: fill cell grid with values for predominant region
call assign (cell* cut* prop/ seel 1* ncol* nroui)
do 200 k=l. (nroui-1)

j = nrow k+1
unritedO, 7OOO) (cell(i*j),i = l*ncol)

200 continue
go to 999

9OO continue
call error(l)

999 continue
stop

2OOO format(f!2. 6)
3OOO format(4f12. 6)
4OOO format(i4)
5OOO format(3i4)
6OOO format(2f!2. 6)
7OOO forroat(lx,<ncol>il)

	end

subroutine openfl

c subroutine to open input and output files using
c unit 9 for input and unit 1O for output
C """ ~ '

character*3O fname

print** 'enter the name of the input file'
read(5,1OOO) fname
open(unit=9* file=fname, status='old')

print** 'enter the name of the output file'
read(5,1OOO) fname
open(unit=lO» file=fname, status='new')

1OOO format(a3O)
return
end

subroutine divide(xl, y 1, x2,y2,unit,seg,nseg)

c ~~ ~~ ~ ~ ~~ ~*
c given a boundary edge* this subroutine divides that edge into
e segments falling within a single cell.

c PARAMETERS:
c the endpoints of the edge are given by (XI,Yl) and (X2»Y2).
c SEG is an array of points breaking the edge into segments with
c the x value in column 1* and the y value in column 2. NSEG
c is the number of points in the array.
c parameters which are changed: SEG, NSEG.
c

include 'param. for'

real xl,x2, yl,y2, unit, seg (maxseg, 2)
integer nseg
integer dir,col

c find crossings of edge with grid lines
segd, 1) = xl
seg(1* 2) = y1
nseg = 1
call grid (unit, x 1, yl/ x2, y2, 1,2* seg, nseg)
call grid (unit, yl, xl, y2, x2, 2, 1* seg, nseg)
nseg = nseg+1
if (nseg . gt. maxseg) call error(2)
seg(nseg, 1) = x2
seg(nseg,2) = y2

c sort segments in proper direction
dir = 1
col = I
if (xl . gt. x2) dir = -1
if (xl . ne. x2) go to 5O
col = 2
if (yl . gt. y2) dir = -1
if (yl . eq. y2) call error(7)

5O continue
call sort2(seg, nseg, col*dir)

return
end

subroutine grid(unit/ p t la/ p t lb/ p t2a» p t2b» ac o 1 . be ol . seg.nseg)

c given a line defined by 2 points, this subroutine returns all
c points where the line crosses grid lines in a specified direction*
c either parallel to the x axis or the y axis, if the initial point
c of the line falls on a grid line/ this is not placed in the array/
c but if the terminal point falls on a grid line, it is included.

c PARAMETERS:
c the spacing between grid lines is designated by UNIT. "A" refers
c to the direction in which grid line crossings will be generated.
c (x or y) and "B" to the remaining direction. the given line is
c defined by the pairs of coordinates* PT1A* PT1B and PT2A/ PT2B.
c if "A*1 refers to the x direction/ these would be xl*yl and x2/ y2;
c if "A" refers to the y direction* these would be yl*xl and y2/ x2.
c the grid crossing points are appended in the array SEG* beginning
c at row number NSEG+1. NSEG is updated to point to the last row
c used. the array holds x coordinates in column 1 and y coordinates
c in column 2. if "A" refers to the x direction* ACOL is 1 and BCOL
c is 2* if "A" refers to the y direction* ACOL is 2 and BCOL is 1.
c parameters which are changed: SEG* NSEG.
c

include 'param. for'

real seg (maxseg/ 2) * unit/ p t la, ptlb* p t2a/ p t2b
real incr* slope/ intcpt/ cross/ tempi/ temp2
integer ac ol * be o I/ ncross/ nseg* k

c initialize grid increments* and slope and intercept of line
if <(pt2a-ptla> . eq. O) go to 3O
incr = unit
slope = (pt2b-ptlb)/(pt2a-ptla)
intcpt = pt2b slope#pt2a

find number of crossings with grid lines and initial crossing

-increasing direction of line (terminal point > initial point)
ncross = iabs(int(pt2a/unit)-int(ptla/unit>)
cross = int(ptla/unit)#unit
if (ptla .le. pt2a) go to 1O

-decreasing direction of line (initial point > terminal point)
incr = incr
tempi = ptla
temp2 = pt2a
if (mod(ptla*unit) .ne. O) tempi = ptla+unit
if (mod(pt2a*unit) .ne. O) temp2 = pt2a+unit
ncross = iabs(int(temp2/unit) int(temp I/unit))
cross = int(temp I/unit)*unit

 generate crossings bg adding increments to initial crossing
1O continue

if (ncross . eq. O) go to 3O
do 20 k = l« ncross

nseg - nseg+1
if (nseg .gt. maxseg) call error(2>
cross = cross+incr
seg(nseg*acol) = cross
seg(nseg*bcol> = intcpt+slope*seg(nseg*acol)

20 continue
3O continue

return '
end

subroutine sort2(arr*n*col,dir)

c ~~ ~~ ~~
c this is a straight insertion sort on a two dimensional array. the
c sorting algorithm is taken from knuth/ vol. 3* p. 81.
c
c PARAMETERS:
c the input parameter* COL* specifies which of the two columns of
c the array are to be used as the key for sorting. the parameter*
c DIR* specifies whether the rows of the array are to be sorted in
c ascending order (DIR>O) or descending order (DIR<O). the
c parameter ARR is the array and N the number of rows in the array.
c parameters which are changed: ARR.
c ~~ ~~

include 'param. for'

real arr(maxseg*2)*hoid(2) , key
integer n* col* dir* j* k

c pull out each element after the first to test it
do 5O j=2* n

hold(l) = arr(j,1)
hold(2) = arr(j, 2)
key = hold(col)
k = j-1

c test the element against each preceding element to find its
c correct position

2O continue
if ((dir . gt. O) .and. (key .ge. arr(k*col))) go to 30
if ((dir .It. O) .and. (key . le. arr(k,col)» go to 30
arr(k+l*1) = arr(k*1)
arr(k+l* 2) = arr(k*2)
k = k-1

if (k .gt. O) go to 2O

- place the element in its correct position
3O continue

arr(k + l, 1) = holdd)
arr(k + l, 2) = hold(2)

5O continue
return
end

subroutine update(right*left,unit, xO,yO,seg,nseg,
+ cell,cut,ncut,prop,nprop,scell)

c this subroutine looks at each segment of an edge* computes the
c areas of the region on either side of the segment within the cell/
c computes information for determining the propagation region* and
c then updates the CELL. CUT* and PROP arrays appropriately.
c
c PARAMETERS:
c parameters which are changed: CELL, CUT, NCUT, PROP, NPROP, SCELL.
c ~~ ~~ ~~~~

common accu
include 'param. for'

integer cell(maxrow,maxc ol), scell(maxcut), nseg,ncut,nprop
integer right, left
real seg(maxseg,2),cut(maxcut, dimcut), prop(maxprp,3), unit
real xl, yl, x2, y2
integer i, j, pi, p2, reg ion
real intgrl, x, y, angle
logical first, swall

c find next segment which needs to be considered
k = 1
xl = seg(k,1)
yl = seg(k,2)

1O continue
k = k+1
if (k .gt. nseg) go to 12O
if ((seg(k,l) . eq. seg(k-l,D) .and.

-i- (seg(k,2) . eq. seg(k-l,2))) go to 1O
x2 = seg(k,1)
y2 = seg(k,2) ,
err = accu*k
i = int(<(xl + x2)/2)/unit)+l
j = int(((yH-y2)/2)/unit)+l
if ((abs(x2-xl) . le. accu) .and. (abs((i-1)*unit-x2) . le. err))

+ go to 100
if ((abs(y2-yl) . le. accu) .and. (abs((i-1)*unit-y2) . le. err))

4- swall = . true.

c update CUT array
if (cell(i,j) . ne. 0) go to 2O

ncut = ncut+1
if (ncut .gt. maxcut) call error(4)
cell (i, j) = ncut

2O continue
pi = celKi, j)
call intgrt(xl, yl, x2, y2, i, j, unit, intgrl)
call reginc(intgrl, right,cut,pi)
intgrl = 1-intgrl
call reginc(intgrl, left,cut,pi)

c check if cell is propagating
x = xl
y = yl
reg ion = right
if (suall . eq. .true.) scell(pl) = left
if (xl . It. x2> go to 4O
x = x2
y = «2
region «= left
if (small . eq. . true.) scell(pl) = right

40 continue
c print* k* x* (mod (x* unit))* err

if (abs((i-1)*unit-x) . gt. err) go to 1OO
c print* k*x* (mod(x*unit))*err

- if propagating* update PROP array
first = . false.
if (cut(pl*l) .ne. O) go to 60

nprop = nprop+1
if (nprop . gt. maxprp) call error(5)
cut(pl»1) = nprop
first = . true.

60 continue
p2 = cut(pi*1)
if ((y . gt. prop(p2*l>) .and. (first . eq. .false.)) go to 1OO

initialize or update the low crossing* angle* and region
angle = (y2-y 1) / (x2-x 1)
if ((first . eq. . true.) . or.

+ (y .It. prop(p2*D) .or.
+ ((y . eq. prop(p2*D) .and. (angle .It. prop(p2*2))))
+ prop(p2*2) = angle

prop (p2» 1) = y
prop(p2*3) = region

reinitialize for next segment
1OO continue

xl = x2
yl = y2
go to 10

12O continue
return
end

subroutine intgrt (x 1, y 1 x2» y2, i , j, uni t, intgr 1)

c this subroutine computes the integral under a line segment
c crossing a cell. the integral is computed assuming
c a unit ccn Of area 1, so the value of the integral is
c always less than or equal to 1. a segment crossing the
c ce ll from right to left produces a negative integral.

c PARAMETERS:
c the segment is defined by the coordinates (XI, Yl)
c an(j (X2, Y2>. the cell is in the Ith column and Jth row of
c the gr jd (the lower left corner of cell 1,1 is the point(O.O)).
c the cell size is defined by UNIT.
c parameter which are changed: INTGRL.

real xl, y 1 , x2, y2, x x 1, yy 1, x x2, yy2, intgr 1
integer i, j

c adjust to unit cell
xxl = xl-(i-l)»unit
yyl = yl-(j-1)*unit
xx2 = x2-(i-l)*unit
yy2 = y2-(j-1)*unit

c compute integral
intgrl = (x x2-xx 1)*(yy2+y y 1 >/2

c check for north wall intersection
if ((yyl . eq. 1) .and. (yy2 . eq. D) call error(B)

c positive direction
if ((yyl . eq. 1) .and. (xxl .le. xx2)> intgrl = intgrl + xxl
if ((yy2 . eq. 1) .and. (xx2 . ge. xxl)) intgrl = intgrl + (1-x x2)

c negative direction
if ((yy2 . eq. 1) .and. (xx2 .It. xxl)) intgrl = intgrl-xx2
if ((yyl . eq. 1) .and. (xxl . gt. xx2)) intgrl = intgrl-(1-xxl)

return
end

subroutine reginc(intgrl» region* cut. ptr)

c this subroutine searches across a given row in the CUT
c array for a given region* then increments the area of
c that region according to the value of INTGRL. the area is
c kept >= O and <1 by adding 1 to negative numbers and taking
c the area modulo 1
c ~~
c PARAMETERS:
c parameters which are changed: CUT

include 'param. for'

real cut(maxcut*dimcut)*intgrl
integer region*ptr
real area
integer ireg*regck

- find position of this region within the row of the CUT array
ireg = 1

2O continue
ireg = ireg-H
if (ireg .gt. dimcut) go to 5O
regck = int(cut(ptr*ireg))

if ((regck . ne. region) .and. (regck . ne. O)) go to 2O

c increment area for this region in this cell
area = cut(ptr*ireg)+intgrl

30 continue
area = mod(area* 1. O)
if (area . It. O. O) area = 1+area
if ((area .It. O. O) .or. (area . ge. 1. O» go to 3O
cut(ptr*ireg) = region+area
go to 1OO

c error condition
5O continue

call error(6)

1OO continue
return
end

subroutine assign(cell»cut* prop* scell* ncol* nrow)

c
c this subroutine looks at each cell in the grid* assigning it
c a value according to which region covers the largest part of the
c cell. if it is cut by one or more boundaries* the region
c covering the largest area within the cell is determined. if the
c cell has a boundary intersecting the west wall* it propagates
c the value of its southwest corner through all cells south of it
c until another propagatng cell is reached. if a cell is cut,
c but all regions have an area of O. O» this indicates the cell is
c cut only by a boundary on the south wall and the value of the
c cell has been stored in the array SCELL. NCOL and NROW give the
c actual dimensions of the CELL array.
c
c PARAMETERS:
c all of the parameters store information which is needed for
c assigning values to the cells.
c parameters which are changed: CELL.

include 'param. for'

integer cell(maxrow* maxcol)* scell(maxcut),ncol* nrow
real cut(maxcut, dimcut)* prop(maxprp* 3)
integer p 1* p2* p3* i, j* k» j j* hi

c loop on each cell
do *?O i = l*ncol

do 7O = l»nroui

if the cell is not cut go to the next cell
if (cell(i*j) . eq. O) go to 5O

. find the region covering the highest percentage of the cell's area
pi = celKi,j)
hi = 1
do 1O k=l* maxreg

if (mod(cut(pl* k + l>* 1. O) . gt. mod(cut(p1*hi), 1. O)>
+ hi = k+1

1O continue
cell(i'j) = int(cut(plf hi»
if (hi .eq. 1) cell(i*j) = scell(pl)
if (cut(pl,l) . eq. O) go to 5O

. propagate through adjoining cells if necessary
p2 - cut(pl* 1)
JJ = J

3O continue
jj = jj-1
p3 = cell(i,jj)

. if the cell is cut and propagating* stop propagation
if ((p3 . ne. O) .and. (cut(p3, 1) . ne. O)) go to 5O

cell(i,jj) = prop(p2,3)
if (jj . gt. 1) go to 3O

5O continue
7O continue
9O continue

return
end

subroutine error(n)

write<6, 2OOO) n
stop

2OOO formatdx* 'ERROR - ', 12)
end

c 'param. for' used with include statement to set parameters
parameter maxseg=500
parameter maxrou/=6OO, maxcol=600i maxcel 1=36OOOO
parameter maxcut*36OOO
parameter maxprp=36000
parameter maxreg=6,dimcut=7

